Finite-Size Scaling for the Mean Spherical Model with Inverse Power Law Interaction

Jordan G. Brankov ${ }^{1,2}$

Received November 21, 1988; revision received February 24, 1989

Abstract

A new analytical technique based on integral transformations with Mittag-Leffler-type kernels is used to derive the finite-size scaling function for the free energy per particle of the mean spherical model with inverse power law asymptotics of the interaction potential. The asymptotic formation of the singularities in the specific heat and magnetic susceptibility at the bulk critical point is studied.

KEY WORDS: Mean spherical model; finite-size scaling; critical behavior; long-range interaction; scaling functions.

1. INTRODUCTION

Recently, Singh and Pathria ${ }^{(1)}$ and Shapiro and Rudnick ${ }^{(2)}$ have developed systematic approaches to the derivation of critical finite-size scaling properties of the fully finite spherical model with nearest neighbor interactions. They have tested the Fisher-Privman hypothesis that near a conventional critical point $t=0, h=0$, where $t=\left(T-T_{c}\right) / T_{c}$ and h are the reduced temperature and field variables, with algebraic divergence of the zero-field correlation length, the singular part of the free energy density, $f_{N}^{\text {sing }}(t, h)$, of a finite d-dimensional hypercubic lattice system of $N=N_{0}^{d}$ sites, may be expressed in the form

$$
\begin{equation*}
f_{N}^{\operatorname{sing}}(t, h) \simeq N_{0}^{-d} Y\left(c_{1} t N_{0}^{1 / v}, c_{2} h N_{0}^{\Lambda / v}\right) \tag{1.1}
\end{equation*}
$$

[^0]valid for d less than the upper critical dimension $d_{>}$. Here v and $\Delta=\beta+\gamma$ are the usual critical indices, c_{1} and c_{2} are system-dependent scale factors, and $Y\left(x_{1}, x_{2}\right)$ is a universal function of the scaled variables
\[

$$
\begin{equation*}
x_{1}=c_{1} t N_{0}^{1 / v}, \quad x_{2}=c_{2} h N_{0}^{d / v} \tag{1.2}
\end{equation*}
$$

\]

An extensive study of finite-size scaling near the first-order phase transition boundary of the spherical model with long-range interaction, decaying at large distances r as $r^{-d-\sigma}$ with $\sigma>0$, has been carried out by Fisher and Privman. ${ }^{(3)}$ The thermodynamic properties of this model were studied by Joyce, ${ }^{(4)}$ who found the critical indices to be σ-dependent for $d_{<}<d<d_{>}$, where $d_{<}=\sigma\left(d_{>}=2 \sigma\right)$ is the lower (upper) critical dimension. The asymptotic finite-size corrections to the equation of state at temperatures $T<T_{c}$ have been obtained in ref. 3 by using a method of direct evaluation of the discretization error at the approximation of a certain type of d-fold sums by the corresponding d-dimensional integrals.

A new systematic approach to the finite-size corrections in the equation of state of the mean spherical model with inverse power law interaction of the type $r^{-d-\sigma}, \sigma>0$, has been developed in ref. 5. It exploits a Laplace transformation technique, which allows one to reduce the problem of the asymptotic evaluation of d-dimensional sums to the corresponding one-dimensional problem.

In the present work a still more general analytic technique is suggested, which allows one to handle the finite-size corrections to the free energy density as well. The explicit evaluation of the scaling function $Y\left(x_{1}, x_{2}\right)$ may be necessary, e.g., for the determination of the scale factors c_{1} and $c_{2} .{ }^{(1)}$

The main idea consists in the use of the identities (see Appendix A)

$$
\begin{equation*}
\ln \left(1+z^{\alpha}\right)=\int_{0}^{\infty} d x\left(1-e^{-z x}\right) x^{-1} G_{\alpha}(x) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1+z^{\alpha}\right)^{-1}=\int_{0}^{\infty} d x e^{-z x} F_{\alpha}(x) \tag{1.4}
\end{equation*}
$$

with $\alpha>0$ and

$$
\begin{align*}
& G_{\alpha}(x)=\alpha E_{\alpha}\left(-x^{\alpha}\right) \tag{1.5a}\\
& F_{\alpha}(x)=x^{\alpha-1} E_{\alpha, x}\left(-x^{\alpha}\right) \tag{1.5b}
\end{align*}
$$

where $E_{\alpha}(z)=E_{\alpha, 1}(z)$, and $E_{\alpha, \beta}(z)$ is an entire function of Mittag-Leffler type, ${ }^{(6)}$ defined by the power series

$$
\begin{equation*}
E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)} \quad(\alpha>0) \tag{1.6}
\end{equation*}
$$

These identities with $\alpha=\sigma / 2$ and

$$
\begin{equation*}
z=y^{-2}\left(n_{1}^{2}+\cdots+n_{d}^{2}\right) \equiv y^{-2}|\mathbf{n}|^{2} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
y=\left(\rho_{\sigma}^{-1} \phi\right)^{1 / \sigma}\left(N_{0} / 2 \pi\right), \quad 0<\sigma \leqslant 2 \tag{1.8}
\end{equation*}
$$

allow one to easily calculate d-dimensional Fourier transforms of the summands in expressions like

$$
\begin{equation*}
U_{d, \sigma}^{(N)}(\phi)=\ln \left(\rho_{\sigma}^{-1} \phi\right)+N_{0}^{-d} \sum_{\mathbf{n} \in \mathbb{S}_{N, d}} \ln \left[1+\left(y^{-1}|\mathbf{n}|\right)^{\sigma}\right] \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{d, \sigma}^{(N)}(\phi)=\phi^{-1} N_{0}^{-d} \sum_{\mathbf{n} \in \mathbb{S}_{N, d}}\left[1+\left(|\mathbf{n}| y^{-1}\right)^{\sigma}\right]^{-1} \tag{1.10}
\end{equation*}
$$

where the summation is carried over the set (N_{0} odd integer)

$$
\begin{equation*}
\mathbb{S}_{N, d}=\left\{-\frac{N_{0}-1}{2}, \ldots, 0, \ldots, \frac{N_{0}-1}{2}\right\} \tag{1.11}
\end{equation*}
$$

The further asymptotic analysis of sums (1.9) and (1.10), which enter into the expressions for the free energy density and the equation for the spherical field [ϕ is a linear function of the latter, see Eq. (2.9) below], respectively, may be accomplished with the aid of the Poisson summation formula ${ }^{(1)}$ and the Ewald summation technique ${ }^{(2)}$ in complete analogy with the case of nearest neighbor interactions, which formally corresponds to $\sigma=2$.

In the present paper it is found convenient to expound a new method in close parallel to the approach of Singh and Pathria. ${ }^{(1)}$ This is expected to facilitate the extension of other results available at $\sigma=2$ to the case of $0<\sigma<2$.

In Section 2, the notation used in the description of the model is introduced and basic expressions for the free energy per particle and the equation for the spherical field are given. The method of derivation of the asymptotic form of sums (1.9) and (1.10) when $N_{0} \rightarrow \infty$ and $\phi \rightarrow 0$ so that
ϕN_{0}^{σ} remains constant is expounded in Section 3. Section 4 contains a derivarion of a new finite-size scaling form of the equation for the spherical field. The main result on the finite-size scaling function for the free energy per particle is obtained in Section 5. Some mathematical aspects of the suggested technique and new consequences of the general results obtained here are mentioned in the discussion in Section 6. The proofs of identities (1.3) and (1.4) and some necessary properties of Mittag-Leffler-type functions are given in Appendix A. Appendix B contains a brief rederivation of a different representation of the equation for the spherical field, obtained first in ref. 5.

2. THE MODEL

We consider the ferromagnetic mean spherical model. ${ }^{(7)}$ Let $\sigma(\mathbf{r}) \in \mathbb{R}^{1}$ be the dynamical variable at site $\mathbf{r} \in \mathbb{Z}^{d}$, and $-J\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right), J(0)=0$, be the pair interaction potential between the variables at sites \mathbf{r} and \mathbf{r}^{\prime}. For any subset $A \subset \mathbb{Z}^{d}$ denote by $\sigma(A)=\{\sigma(\mathbf{r}), \mathbf{r} \in A\}$ the configuration in A and let the interaction energy of $\sigma(A)$ at fixed boundary configuration $\sigma\left(\mathbb{Z}^{d} \backslash A\right)$ be

$$
\begin{align*}
H\left[\sigma(A) \mid \sigma\left(\mathbb{Z}^{d} \backslash A\right)\right]= & -\sum_{\left\{\mathbf{r}, \mathbf{r}^{\prime}\right\} \in A} J\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \sigma(\mathbf{r}) \sigma\left(\mathbf{r}^{\prime}\right) \\
& -\sum_{\mathbf{r} \in A} \sum_{\mathbf{r}^{\prime} \in \mathbb{Z}^{d} \backslash A} J\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \sigma(\mathbf{r}) \sigma\left(\mathbf{r}^{\prime}\right) \tag{2.1}
\end{align*}
$$

Given a hypercubic region $\Lambda=\left\{1, \ldots, N_{0}\right\}^{d}$ of $N=N_{0}^{d}$ sites and periodic boundary conditions, i.e., $\sigma\left(\mathbf{r}+N_{0} \mathbf{t}\right)=\sigma(\mathbf{r})$ for any $\mathbf{t} \in \mathbb{Z}^{d}$, the total energy of $\sigma(\Lambda)$ in an external magnetic field $H \in \mathbb{R}^{1}$ acting only on $\sigma(\mathbf{r}), \mathbf{r} \in \Lambda$, may be written in the form

$$
\begin{equation*}
H_{N}[\sigma(\Lambda)]=-\sum_{\left\{\mathbf{r}, \mathbf{r}^{\prime}\right\} \subset A} \tilde{J}_{N}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \sigma(\mathbf{r}) \sigma\left(\mathbf{r}^{\prime}\right)-H \sum_{\mathbf{r} \in A} \sigma(\mathbf{r}) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{J}_{N}(\boldsymbol{l})=\sum_{\mathbf{t} \in Z^{d}} J_{N}\left(\left|\boldsymbol{l}-N_{0} \mathbf{t}\right|\right) \tag{2.3}
\end{equation*}
$$

is a periodic function of the components of l with period N_{0}, which includes all the interactions with the repeated images of the system. The series in (2.3) is assumed absolutely convergent.

The partition function of the Gaussian model with Hamiltonian (2.2), in the canonical Gibbs ensemble with temperature $T=\beta^{-1}>0$ and spherical field s, is defined as

$$
\begin{equation*}
Z_{N}(K, L, s)=\int_{\mathbb{R}^{N}} \exp \left\{-\beta H_{N}[\sigma(\Lambda)]-s \sum_{\mathbf{r} \in A}[\sigma(\mathbf{r})]^{2}\right\} \prod_{\mathbf{r} \in \mathcal{A}} d \sigma(\mathbf{r}) \tag{2.4}
\end{equation*}
$$

where $K=\beta \hat{J}(0), L=\beta H$. The exact evaluation of the multidimensional integral in (2.4) with Hamiltonian (2.2), containing a cyclic interaction matrix, is readily achieved by using a Fourier transformation. The Fourier transform of the interaction potential,

$$
\begin{equation*}
\hat{J}(\mathbf{q})=\sum_{\boldsymbol{l} \in \Lambda} \widetilde{J}_{N}(\boldsymbol{l}) \exp (-i \boldsymbol{l} \cdot \mathbf{q}), \quad \mathbf{q}=2 \pi \mathbf{n} / N_{0}, \quad \mathbf{n} \in \mathbb{S}_{N, d} \tag{2.5}
\end{equation*}
$$

defined for convenience on the d-dimensional torus (1.11), is assumed to have the long-wavelength asymptotic form

$$
\begin{equation*}
\hat{J}(\mathbf{q}) \simeq \hat{J}(0)\left[1-\rho_{\sigma}|\mathbf{q}|^{\sigma}\right], \quad|\mathbf{q}| \rightarrow 0, \quad \sigma>0, \quad \rho_{\sigma}>0 \tag{2.6}
\end{equation*}
$$

which corresponds to the inverse power law behavior $J(r) \sim r^{-d-\sigma}$ at large separations r. The asymptotic form (2.6) determines the leading finite-size corrections to the thermodynamic properties for dimensions $d<d_{>}$. Following refs. 3 and 4 , we fix the function $\hat{J}(\mathbf{q})$ for $\mathbf{q} \in(-\pi, \pi]^{d}$ and account for the size of the system by choosing the appropriate discrete set of vectors \mathbf{q}; see (2.5).

The thermodynamic potential per particle for the Gaussian model,

$$
\begin{equation*}
a_{N}(K, L, S)=-(\beta N)^{-1} \ln Z_{N}(K, L, s) \tag{2.7}
\end{equation*}
$$

is given with sufficient accuracy by its long-wavelength approximation

$$
\begin{equation*}
\beta a_{N}(K, L, s) \simeq \frac{1}{2} \ln \frac{\rho_{\sigma} K}{2 \pi}-\frac{L^{2}}{2 K \phi}+\frac{1}{2} U_{d, \sigma}^{(N)}(\phi) \tag{2.8}
\end{equation*}
$$

where $U_{d, \sigma}^{(N)}(\phi)$ is the d-fold sum defined by Eq. (1.9), and

$$
\begin{equation*}
\phi=2 s / K-1 \tag{2.9}
\end{equation*}
$$

is a parameter related to the spherical field s.
The free energy per particle for the mean spherical model, $f_{N}(K, L)$, is defined by the Legendre transformation

$$
\begin{equation*}
\beta f_{N}(K, L)=\sup _{s}\left[\beta a_{N}(K, L, s)-s\right] \tag{2.10}
\end{equation*}
$$

The supremum in the right-hand side of Eq. (2.10) is attained at a point $s=s_{N}(K, L)$ which obeys the equation

$$
\begin{equation*}
\beta \frac{\partial}{\partial s} a_{N}(K, L, s)=1 \tag{2.11}
\end{equation*}
$$

or, explicitly,

$$
\begin{equation*}
W_{d, \sigma}^{(N)}(\phi) \simeq K\left[1-\left(\frac{L}{K \phi}\right)^{2}\right] \tag{2.12}
\end{equation*}
$$

where the d-fold sum $W_{d, \sigma}^{(N)}(\phi)$ is defined by Eq. (1.10).

3. GENERAL ASYMPTOTIC ANALYSIS

We need asymptotic expressions for the sums (1.9) and (1.10) when $N_{0} \rightarrow \infty, \phi \rightarrow 0$, so that y [see Eq. (1.8)] remains finite. The technique suggested here is based on identities (1.3) and (1.4), the application of which to the summands in (1.9) and (1.10), respectively, allows one to factorize the d-fold summation. Thus we obtain the representations

$$
\begin{equation*}
U_{d, \sigma}^{(N)}(\phi)=\ln \tilde{\phi}+\int_{0}^{\infty} d x\left\{1-\left[Q_{N_{0}}\left(x \tilde{\phi}^{-2 / \sigma}\right)\right]^{d}\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{d, \sigma}^{(N)}(\phi)=\rho_{\sigma}^{-1} \tilde{\phi}^{-1} \int_{0}^{\infty} d x\left[Q_{N_{0}}\left(x \tilde{\phi}^{-2 / \sigma}\right)\right]^{d} F_{\sigma / 2}(x) \tag{3.2}
\end{equation*}
$$

where $\tilde{\phi}=\phi / \rho_{\sigma}$ and

$$
\begin{equation*}
Q_{N_{0}}(a)=\frac{1}{N_{0}} \sum_{n=-\left(N_{0}-1\right) / 2}^{\left(N_{0}-1\right) / 2} e^{-a\left(2 \pi n / N_{0}\right)^{2}} \tag{3.3}
\end{equation*}
$$

The asymptotic analysis of (3.3) when $N_{0} \rightarrow \infty$ follows standard procedures. First we define a periodic function of $n \in \mathbb{Z}^{1}$ with period N_{0} by setting

$$
\begin{equation*}
g^{(p)}\left(\frac{2 \pi n}{N_{0}} ; a\right)=\exp \left[-a\left(\frac{2 \pi n}{N_{0}}\right)^{2}\right], \quad n \in\left[-\frac{N_{0}}{2}, \frac{N_{0}}{2}\right] \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{(p)}\left(\frac{2 \pi}{N_{0}}\left(n+k N_{0}\right) ; a\right)=g^{(p)}\left(\frac{2 \pi n}{N_{0}} ; a\right), \quad k \in \mathbb{Z}^{1} \tag{3.5}
\end{equation*}
$$

Then we have the Fourier series expansion

$$
\begin{equation*}
g^{(p)}\left(\frac{2 \pi n}{N_{0}} ; a\right)=\sum_{k=-\infty}^{\infty} e^{2 \pi i k n / N_{0}} \hat{g}(k ; a) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{align*}
\hat{g}(k ; a) & =\frac{1}{N_{0}} \int_{-N_{0} / 2}^{N_{0} / 2} d p e^{-2 \pi i k p / N_{0}} g^{(p)}\left(\frac{2 \pi p}{N_{0}} ; a\right) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \theta e^{-i k \theta-a \theta^{2}} \\
& =(4 \pi a)^{-1 / 2} e^{-k^{2} / 4 a} \operatorname{Re} \Phi\left(\pi a^{1 / 2}+\frac{1}{2} i k a^{-1 / 2}\right) \tag{3.7}
\end{align*}
$$

Thus, by inserting (3.6) into (3.3), we obtain

$$
\begin{equation*}
Q_{N_{0}}(a)=\sum_{l=-\infty}^{\infty} \hat{g}\left(l N_{0} ; a\right) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{g}(0 ; a)=(4 \pi a)^{-1 / 2} \Phi\left(\pi a^{1 / 2}\right) \tag{3.9}
\end{equation*}
$$

and, when $l \neq 0$,

$$
\begin{align*}
\hat{g}\left(l N_{0} ; a\right) & =(4 \pi a)^{-1 / 2} e^{-l^{2} N_{0}^{2} / 4 a} \operatorname{Re} \Phi\left(\pi a^{1 / 2}+\frac{1}{2} i l N_{0} a^{-1 / 2}\right) \\
& \simeq(4 \pi a)^{-1 / 2} e^{-l^{2} N_{0}^{2} / 4 a} \tag{3.10}
\end{align*}
$$

since for all $a>0$,

$$
\begin{equation*}
\left|\pi a^{1 / 2}+\frac{1}{2} i l N_{0} a^{-1 / 2}\right|^{2} \geqslant \pi N_{0}|l| \rightarrow \infty, \quad N_{0} \rightarrow \infty, \quad l \neq 0 \tag{3.11}
\end{equation*}
$$

and the error function $\Phi(z)$ tends to unity exponentially fast as $|z| \rightarrow \infty$ in the considered sector of the complex z plane.

By inserting the asymptotic form (3.10) into (3.8), one obtains

$$
\begin{equation*}
Q_{N_{0}}(a) \simeq(4 \pi a)^{-1 / 2} \Phi\left(\pi a^{1 / 2}\right)+(4 \pi a)^{-1 / 2} \sum_{l=-\infty}^{\infty} e^{-l^{2} N_{0}^{2} / 4 a} \tag{3.12}
\end{equation*}
$$

where the prime in the sum denotes that the term with zero summation index has been omitted.

Next, upon raising (3.12) to the power d, one makes the approximation

$$
\begin{equation*}
\left[Q_{N_{0}}(a)\right]^{d} \simeq(4 \pi a)^{-d / 2}\left\{\left[\Phi\left(\pi a^{1 / 2}\right)\right]^{d}+\sum_{t \in \mathbb{Z}^{d}}^{\prime} e^{-|t|^{2} N_{0}^{2} / 4 a}\right\} \tag{3.13}
\end{equation*}
$$

which follows if, in all terms of the form

$$
\begin{equation*}
\left[\Phi\left(\pi a^{1 / 2}\right)\right]^{m} e^{-\left|| |^{2} N_{0}^{2} / 4 a\right.} \tag{3.14}
\end{equation*}
$$

with $1 \leqslant m \leqslant d-1$ and $|\boldsymbol{l}| \neq 0$, one replaces the error function $\Phi\left(\pi a^{1 / 2}\right)$ by unity. This approximation is legitimate since the exponential in (3.14) effectively cuts off the contribution from small values of a.

The use of the asymptotic expression (3.13) in Eqs. (3.1) and (3.2) completes the separation of the leading finite-size effects from the bulk contribution:

$$
\begin{align*}
U_{d, \sigma}^{(N)}(\phi) & =U_{d, \sigma}(\phi)+\delta U_{d, \sigma}^{(N)}(\phi) \tag{3.15}\\
W_{d, \sigma}^{(N)}(\phi) & =W_{d, \sigma}(\phi)+\delta W_{d, \sigma}^{(N)}(\phi) \tag{3.16}
\end{align*}
$$

Here the corresponding bulk terms are

$$
\begin{align*}
& U_{d, \sigma}(\phi) \\
& \quad=\ln \tilde{\phi}+\int_{0}^{\infty} d x\left\{1-(4 \pi x)^{-d / 2} \tilde{\phi}^{d / \sigma}\left[\Phi\left(\pi x^{1 / 2} \tilde{\phi}^{-1 / \sigma}\right)\right]^{d}\right\} \frac{G_{\sigma / 2}(x)}{x} \tag{3.17}\\
& \begin{aligned}
W_{d, \sigma}(\phi)
\end{aligned} \\
& \quad=(4 \pi)^{-d / 2} \rho_{\sigma}^{-1} \tilde{\phi}^{d / \sigma-1} \int_{0}^{\infty} d x x^{-d / 2}\left[\Phi\left(\pi x^{1 / 2} \tilde{\phi}^{-1 / \sigma}\right)\right]^{d} F_{\sigma / 2}(x) \tag{3.18}
\end{align*}
$$

and the leading finite-size corrections are given by

$$
\begin{align*}
& \delta U_{d, \sigma}^{(N)}(\phi) \\
& \quad \simeq-(4 \pi)^{-d / 2} \tilde{\phi}^{d / \sigma} \sum_{l \in \mathbb{Z}^{d}}^{\prime} \int_{0}^{\infty} d x x^{-d / 2} e^{-\left.\pi^{2} y^{2}| |\right|^{2} x^{-1}} \frac{G_{\sigma / 2}(x)}{x} \tag{3.19}\\
& \delta W_{d, \sigma}^{(N)}(\phi) \\
& \quad \simeq(4 \pi)^{-d / 2} \rho_{\sigma}^{-1} \tilde{\phi}^{d / \sigma-1} \sum_{l \in \mathbb{Z}^{d}}^{\prime} \int_{0}^{\infty} d x x^{-d / 2} e^{-\pi^{2} y^{2}|l|^{2} x^{-1}} F_{\sigma / 2}(x) \tag{3.20}
\end{align*}
$$

4. ASYMPTOTIC FORM OF THE EQUATION FOR THE SPHERICAL FIELD

The asymptotic form of Eq. (2.12) as $N_{0} \rightarrow \infty, \phi \rightarrow 0$, so that $\phi N_{0}^{\sigma}=$ const, has been studied in ref. 5 by using a Laplace transformation technique equivalent to the use of identity (1.4). It was shown there that when $\sigma<d<2 \sigma$, the solution $\phi=\phi_{N}(K, L)$ of this equation, in the finitesize scaling critical region defined by the finite values of the scaled variables

$$
\begin{align*}
& x_{1}=\rho_{\sigma} K_{c}\left[1-K / K_{c}\right] N_{0}^{d-\sigma} \tag{4.1}\\
& x_{2}=\left(\rho_{\sigma} K_{c}\right)^{-1 / 2} L N_{0}^{(d+\sigma) / 2}
\end{align*}
$$

has the asymptotic form

$$
\begin{equation*}
\phi_{N}(K, L) \simeq \rho_{\sigma} N_{0}^{-\sigma} g\left(x_{1}, x_{2}\right) \tag{4.2}
\end{equation*}
$$

where $g=g\left(x_{1}, x_{2}\right)$ is the solution of the equation (see Appendix B)

$$
\begin{equation*}
g^{-1}-g \sum_{l \in \mathbb{Z}^{d}}^{\prime}(2 \pi|\boldsymbol{l}|)^{-\sigma}\left[(2 \pi|\boldsymbol{l}|)^{\sigma}+g\right]^{-1}=-\tilde{x}_{1}-\left(x_{2} / g\right)^{2} \tag{4.3}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{x}_{1}=x_{1}+\frac{C_{d, \sigma}}{(2 \pi)^{\sigma} \Gamma(\sigma / 2)} \tag{4.4}
\end{equation*}
$$

Here a new representation of the equation for the spherical field (2.12) is derived which is a direct extension of the equation due to Singh and Pathria. ${ }^{(1)}$ To this end we make use of the integral representation (see Appendix A)

$$
\begin{equation*}
F_{\sigma / 2}(x)=(4 \pi)^{-1 / 2} x^{-3 / 2} \int_{0}^{\infty} d t t^{\sigma} E_{\sigma, \sigma}\left(-t^{\sigma}\right) e^{-t^{2} / 4 x} \tag{4.5}
\end{equation*}
$$

and transform expression (3.20) to

$$
\begin{align*}
& \delta W_{d, \sigma}^{(N)}(\phi) \\
& \quad=\rho_{\sigma}^{-1} \pi^{-(d+1) / 2}\left(\frac{2 \pi}{N_{0}}\right)^{d-\sigma} \Gamma\left(\frac{d+1}{2}\right) \sum_{l \in \mathbb{Z}^{d}}^{\prime}(2 \pi|l|)^{-d+\sigma} w_{d, \sigma}(2 \pi|l| y) \tag{4.6}
\end{align*}
$$

where

$$
\begin{equation*}
w_{d, \sigma}(z)=\int_{0}^{\infty} d \tau \tau^{\sigma}\left(1+\tau^{2}\right)^{-(d+1) / 2} E_{\sigma, \sigma}\left(-\tau^{\sigma} z^{\sigma}\right) \tag{4.7}
\end{equation*}
$$

At $\sigma=2$, by making use of the fact that

$$
\begin{equation*}
E_{2,2}(-x)=\frac{\sin x^{1 / 2}}{x^{1 / 2}}, \quad x \geqslant 0 \tag{4.8}
\end{equation*}
$$

and by integration by parts in Eq. (4.7) with account of the integral representation of the modified Bessel function

$$
\begin{gather*}
K_{v}(y z)=(2 z)^{v} \pi^{-1 / 2} y^{-v} \Gamma\left(v+\frac{1}{2}\right) \int_{0}^{\infty} d t\left(z^{2}+t^{2}\right)^{-v-1 / 2} \cos (t y) \\
(y>0, \quad|\arg z|<\pi / 2) \tag{4.9}
\end{gather*}
$$

one verifies that expression (4.6) reduces (up to a slight difference in notation) to the well-known form ${ }^{(1)}$

$$
\begin{align*}
& \delta W_{d, 2}^{(N)}(\phi) \\
& \quad \simeq\left(2 \rho_{2}\right)^{-1} \pi^{-d / 2}\left(\frac{\pi y}{N_{0}}\right)^{d-2} \sum_{l \in \mathbb{Z}^{d}}^{\prime}(\pi y|\boldsymbol{l}|)^{-(d-2) / 2} K_{(d-2) / 2}(2 \pi|\boldsymbol{l}| y) \tag{4.10}
\end{align*}
$$

In the general case of $0<\sigma<2$, the equation for the spherical field (2.12) in the finite-size scaling critical region (4.1) now follows from (4.6) and the known expression for the bulk term ${ }^{(3,4)}$

$$
\begin{equation*}
W_{d, \sigma}(\phi) \simeq K_{c}-\rho_{\sigma}^{-1} D_{d, \sigma} \tilde{\phi}^{d / \sigma-1} \tag{4.11}
\end{equation*}
$$

It reads

$$
\begin{gather*}
2^{d-\sigma} \pi^{(d-1) / 2-\sigma} \Gamma\left(\frac{d+1}{2}\right) \sum_{\boldsymbol{l} \in \mathbb{Z}^{d}}^{\prime}(2 \pi|\boldsymbol{l}|)^{-d+\sigma} w_{d, \sigma}(2 \pi|\boldsymbol{l}| y) \\
-D_{d, \sigma}(2 \pi y)^{d-\sigma}=-x_{1}-x_{2}^{2}(2 \pi y)^{-2 \sigma} \tag{4.12}
\end{gather*}
$$

In the limit $y \rightarrow 0^{+}$one may use the approximation

$$
\begin{align*}
\sum_{l \in \mathbb{Z}^{d}}^{\prime} & (2 \pi|\boldsymbol{l}|)^{-d+\sigma} w_{d, \sigma}(2 \pi|\boldsymbol{l}| y) \\
& \simeq \frac{y^{-\sigma}}{(2 \pi)^{d}} \frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \int_{0}^{\infty} d r r^{\sigma-1} w_{d, \sigma}(r) \simeq \frac{\pi^{1 / 2} y^{-\sigma}}{2^{d} \pi^{d / 2} \Gamma((d+1) / 2)} \tag{4.13}
\end{align*}
$$

where the integral (A.16) has been used. Hence

$$
\begin{equation*}
\delta W_{d, \sigma}^{(N)}(\phi) \simeq \rho_{\sigma}^{-1} N_{0}^{-d+\sigma}(2 \pi y)^{-\sigma}, \quad y \rightarrow 0^{+} \tag{4.14}
\end{equation*}
$$

and Eq. (4.12) reduces to the asymptotic form

$$
x_{2}^{2}(2 \pi y)^{-2 \sigma}+(2 \pi y)^{-\sigma} \simeq-x_{1}
$$

which has the (positive) solution

$$
\begin{equation*}
(2 \pi y)^{\sigma} \simeq \frac{1}{2}\left|x_{1}\right|^{-1}\left[\left(1+4\left|x_{1}\right| x_{2}^{2}\right)^{1 / 2}+1\right] \tag{4.15}
\end{equation*}
$$

when $x_{1} \rightarrow-\infty$.
An approximation in the limit $y \rightarrow+\infty$ is most readily obtained from the initial expression (3.20). By substituting there the asymptotic form [see (A.14)]

$$
\begin{equation*}
F_{\sigma / 2}(x) \simeq \frac{\sigma}{2 \pi} \sin \left(\frac{\sigma \pi}{2}\right) \Gamma\left(\frac{\sigma}{2}\right) x^{-\sigma / 2-1}, \quad x \rightarrow+\infty \tag{4.16}
\end{equation*}
$$

and integrating, one obtains, for $0<\sigma<2$,

$$
\begin{equation*}
\delta W_{d, \sigma}^{(N)}(\phi) \simeq \rho_{\sigma}^{-1} M_{d, \sigma} N_{0}^{-d+\sigma} 2^{\sigma}(2 \pi y)^{-2 \sigma}, \quad y \rightarrow+\infty \tag{4.17}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{d, \sigma}=\pi^{-d / 2} \frac{\sigma}{2 \pi} \sin \left(\frac{\sigma \pi}{2}\right) \Gamma\left(\frac{\sigma}{2}\right) \Gamma\left(\frac{d+\sigma}{2}\right) \sum_{l \in \mathbb{Z}^{d}}^{\prime}|l|^{-d-\sigma} \tag{4.18}
\end{equation*}
$$

It should be noted that this result cannot be continued smoothly to the case $\sigma=2$, since then $F_{\sigma / 2}(x)$ falls off exponentially fast,

$$
\begin{equation*}
F_{1}(x)=e^{-x} \tag{4.19}
\end{equation*}
$$

and, correspondingly, from (4.10) one obtains in the limit $y \gg 1$:

$$
\begin{equation*}
\delta W_{d, 2}^{(N)}(\phi) \simeq \rho_{2}^{-1} N_{0}^{-d+2}(4 \pi)^{-1} d y^{(d-3) / 2} e^{-2 \pi y}, \quad y \rightarrow \infty \tag{4.20}
\end{equation*}
$$

In any case, $\delta W_{d, \sigma}^{(N)}(\phi)$ does not contribute to the leading asymptotic form of the equation for the spherical field, which in the limit under consideration is

$$
\begin{equation*}
D_{d, \sigma}(2 \pi y)^{d-\sigma} \simeq x_{1} \tag{4.21}
\end{equation*}
$$

Hence

$$
\begin{equation*}
(2 \pi y)^{\sigma} \simeq D_{d, \sigma}^{-\sigma /(d-\sigma)} x_{1}^{\sigma /(d-\sigma)}, \quad x_{1} \rightarrow+\infty \tag{4.22}
\end{equation*}
$$

5. ASYMPTOTIC FORM OF THE FREE ENERGY PER PARTICLE

It is convenient to transform the bulk term (3.17) with the aid of the identity [see Appendix A, Eq. (A.18)]

$$
\begin{equation*}
\ln \tilde{\phi}=-\int_{0}^{\infty} d x x^{-1}\left[G_{\sigma / 2}\left(x \tilde{\phi}^{2 / \sigma}\right)-G_{\sigma / 2}(x)\right] \tag{5.1}
\end{equation*}
$$

to the form

$$
\begin{equation*}
U_{d, \sigma}(\phi)=A_{d, \sigma}-B_{d, \sigma}(\tilde{\phi}) \tag{5.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{d, \sigma}=\int_{0}^{\infty} d t t^{-1}\left\{1-(4 \pi t)^{-d / 2}\left[\Phi\left(\pi t^{1 / 2}\right)\right]^{d}\right\} G_{\sigma / 2}(t) \tag{5.3}
\end{equation*}
$$

and
$B_{d, \sigma}(\tilde{\phi})=(4 \pi)^{-d / 2} \int_{0}^{\infty} d t t^{-d / 2-1}\left[\Phi\left(\pi t^{1 / 2}\right)\right]^{d}\left[G_{\sigma / 2}\left(t \tilde{\phi}^{2 / \sigma}\right)-G_{\sigma / 2}(t)\right]$

By using identity (A.11), one directly verifies that

$$
\begin{equation*}
\frac{d}{d \phi} U_{d, \sigma}(\phi)=W_{d, \sigma}(\phi) \tag{5.5}
\end{equation*}
$$

and, therefore, from Eq. (4.11) one finds

$$
\begin{equation*}
U_{d, \sigma}(\phi) \simeq U_{d, \sigma}(0)+\rho_{\sigma} K_{c} \tilde{\phi}-\frac{\sigma}{d} D_{d, \sigma} \tilde{\phi}^{d / \sigma} \tag{5.6}
\end{equation*}
$$

The finite-size term (3.19) may be transformed with the use of the integral representation [see (A.7)]

$$
\begin{equation*}
G_{\sigma / 2}(x)=(4 \pi x)^{-1 / 2} \int_{0}^{\infty} G_{\sigma}(u) e^{-u^{2} / 4 x} d u \tag{5.7}
\end{equation*}
$$

to the form

$$
\begin{align*}
& \delta U_{d, \sigma}^{(N)}(\phi) \\
& \quad=-N_{0}^{-d} \sigma 2^{d} \pi^{(d-1) / 2} \Gamma\left(\frac{d+1}{2}\right) \sum_{\boldsymbol{l} \in \mathbb{Z}^{d}}^{\prime}(2 \pi|\boldsymbol{l}|)^{-d} u_{d, \sigma}(2 \pi|\boldsymbol{l}| y) \tag{5.8}
\end{align*}
$$

where

$$
\begin{equation*}
u_{d, \sigma}(z)=\int_{0}^{\infty} d \tau\left(1+\tau^{2}\right)^{-(d+1) / 2} E_{\sigma}\left(-\tau^{\sigma} z^{\sigma}\right) \tag{5.9}
\end{equation*}
$$

One may notice that at $\sigma=2$,

$$
\begin{equation*}
E_{2}\left(-\tau^{2} z^{2}\right)=\cos (\tau z) \tag{5.10}
\end{equation*}
$$

and, with the aid of the integral representation of the modified Bessel function (4.9), expression (5.8) reduces to the form

$$
\begin{equation*}
\delta U_{d, 2}^{(N)}(\phi)=-2 \pi^{-d / 2}\left(\frac{\pi y}{N_{0}}\right)^{d} \sum_{t \in \mathbb{Z}^{d}}^{\prime}(\pi y|\boldsymbol{l}|)^{-d / 2} K_{d / 2}(2 \pi y|\boldsymbol{l}|) \tag{5.11}
\end{equation*}
$$

known (in a slightly different notation) for the mean spherical model with nearest neighbor interactions. ${ }^{(1)}$

Thus, by collecting the results (2.8), (3.5), (5.6), and (5.11), one obtains for the thermodynamic potential per particle of the Gaussian model with spherical field s given by [see Eqs. (1.8) and (2.9)]

$$
\begin{equation*}
s=\frac{1}{2} K\left[1+\rho_{\sigma}\left(\frac{2 \pi y}{N_{0}}\right)^{\sigma}\right], \quad y \text { fixed } \tag{5.12}
\end{equation*}
$$

the following asymptotic expression:

$$
\begin{align*}
& \beta a_{N}(K, L, s) \\
& \simeq \frac{1}{2} U_{d, \sigma}(0)+\frac{1}{2} \ln \frac{\rho_{\sigma} K}{2 \pi}-\frac{L^{2}}{2 \rho_{\sigma} K}\left(\frac{N_{0}}{2 \pi y}\right)^{\sigma}+\frac{\rho_{\sigma} K}{2}\left(\frac{2 \pi y}{N_{0}}\right)^{\sigma} \\
& \\
& \quad-N_{0}^{-d}\left(\frac{\sigma}{2}\right)\left[d^{-1} D_{d, \sigma}(2 \pi y)^{d}+2^{d} \pi^{(d-1) / 2} \Gamma\left(\frac{d+1}{2}\right)\right. \tag{5.13}\\
& \left.\quad \times \sum_{l \in \mathbb{Z}^{d}}^{\prime}(2 \pi|\boldsymbol{l}|)^{-d} u_{d, \sigma}(2 \pi|\boldsymbol{l}| y)\right]
\end{align*}
$$

Finally, in the finite-size scaling critical region (4.1) the free energy per particle of the mean spherical model, defined by Eq. (2.10), takes the form

$$
\begin{equation*}
\beta f_{N}(K, L) \simeq \frac{1}{2} U_{d, \sigma}(0)+\frac{1}{2} \ln \frac{\rho_{\sigma} K}{2 \pi}-\frac{1}{2} K+N_{0}^{-d} Y_{d, \sigma}\left(x_{1}, x_{2}\right) \tag{5.14}
\end{equation*}
$$

where the finite-size scaling function $Y_{d, \sigma}\left(x_{1}, x_{2}\right)$ is given by

$$
\begin{align*}
Y_{d, \sigma}\left(x_{1}, x_{2}\right)= & -\frac{x_{2}^{2}}{(2 \pi y)^{\sigma}}+\left(\frac{1}{2}-\frac{\sigma}{2 d}\right) D_{d, \sigma}(2 \pi y)^{d} \\
& -(4 \pi)^{(d-1) / 2} \Gamma\left(\frac{d+1}{2}\right)\left[\sigma \sum_{l \in \mathbb{Z}^{d}}^{\prime}(2 \pi|l|)^{-d} u_{d, \sigma}(2 \pi|l| y)\right. \\
& \left.+y^{\sigma} \sum_{l \in \mathbb{Z}^{d}}^{\prime}(2 \pi|l|)^{-d+\sigma} w_{d, \sigma}(2 \pi|l| y)\right] \tag{5.15}
\end{align*}
$$

where $y=y\left(x_{1}, x_{2}\right)$ is the solution of Eq. (4.12). This equation generalizes the corresponding result of Singh and Pathria ${ }^{(1)}$ to the case of arbitrary $0<\sigma<2$.

With the use of Eq. (4.12) one can write (5.15) in an alternative form,

$$
\begin{align*}
Y_{d, \sigma}\left(x_{1}, x_{2}\right)= & \frac{1}{2} g\left(x_{1}, x_{2}\right)-\frac{1}{2} \frac{x_{2}^{2}}{g\left(x_{1}, x_{2}\right)}-\frac{\sigma}{2 d} D_{d, \sigma} g^{d / \sigma}\left(x_{1}, x_{2}\right) \\
& -\sigma(4 \pi)^{(d-1) / 2} \Gamma\left(\frac{d+1}{2}\right) \\
& \times \sum_{l \in \mathbb{Z}^{d}}^{\prime}(2 \pi|l|)^{-d} u_{d, \sigma}\left(|l| g^{1 / \sigma}\left(x_{1}, x_{2}\right)\right) \tag{5.16}
\end{align*}
$$

Let us consider now the asymptotic forms of $Y_{d, \sigma}\left(x_{1}, x_{2}\right)$ as $x_{1} \rightarrow \pm \infty$. In the limit $y \rightarrow 0^{+}\left(x_{1} \rightarrow-\infty\right)$, we use the approximation

$$
\begin{align*}
\sum_{\boldsymbol{l} \in \mathbb{Z}^{d}}^{\prime} & (2 \pi|\boldsymbol{l}|)^{-d} u_{d, \sigma}(2 \pi|\boldsymbol{l}| y) \\
& \simeq \frac{1}{(2 \pi)^{d}} \frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \int_{2 \pi y}^{\infty} d r r^{-1} u_{d \sigma \sigma}(r) \\
& \simeq(4 \pi)^{-d / 2} \frac{\pi^{1 / 2}}{\Gamma((d+1) / 2)} \ln \frac{1}{y}+\mathrm{const} \tag{5.17}
\end{align*}
$$

where it has been taken into account that

$$
\begin{align*}
\int_{2 \pi y}^{\infty} & d r r^{-1} E_{\sigma}\left(-r^{\sigma} \tau^{\sigma}\right) \\
& =-\ln (2 \pi y \tau) E_{\sigma}\left(-(2 \pi y \tau)^{\sigma}\right)+\mathrm{const} \\
& \simeq-\ln (2 \pi y \tau)+\mathrm{const} \tag{5.18}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\delta U_{d, \sigma}^{(N)}(\phi) \simeq-N_{0}^{-d} \sigma\left(\ln \frac{1}{y}+\mathrm{const}\right), \quad y \rightarrow 0^{+} \tag{5.19}
\end{equation*}
$$

and the leading asymptotic form of $Y_{d, \sigma}\left(x_{1}, x_{2}\right)$ when $x_{1} \rightarrow-\infty, x_{2}$ finite, becomes independent of σ :

$$
\begin{equation*}
Y_{d, \sigma}\left(x_{1}, x_{2}\right) \simeq-\frac{1}{2}\left(1+4\left|x_{1}\right| x_{2}^{2}\right)^{1 / 2}+\frac{1}{2} \ln \left[\frac{\left(1+4\left|x_{1}\right| x_{2}^{2}\right)^{1 / 2}+1}{2\left|x_{1}\right|}\right] \tag{5.20}
\end{equation*}
$$

In the limit $y \rightarrow \infty\left(x_{1} \rightarrow+\infty\right)$ the term

$$
\begin{equation*}
\delta U_{d, \sigma}^{(N)}(\phi) \simeq-N_{0}^{-d} M_{d, \sigma}(\pi y)^{-\sigma}, \quad y \rightarrow \infty \tag{5.21}
\end{equation*}
$$

does not contribute to the leading asymptotic form of $Y_{d, \sigma}\left(x_{1}, x_{2}\right)$, which becomes

$$
\begin{equation*}
Y_{d, \sigma}\left(x_{1}, x_{2}\right) \simeq \frac{d-\sigma}{2 d} D_{d, \sigma}^{-\sigma /(d-\sigma)} x_{1}^{d /(d-\sigma)}, \quad x_{1} \rightarrow+\infty \tag{5.22}
\end{equation*}
$$

We note again that the asymptotic expression (5.21) cannot be continued smoothly to the case $\sigma=2$, when it becomes exponentially small:

$$
\begin{equation*}
\delta U_{d, 2}^{(N)}(\phi) \simeq-N_{0}^{-d} d y^{(d-1) / 2} e^{-2 \pi y} \tag{5.23}
\end{equation*}
$$

However, the asymptotic form (5.22) reduces at $\sigma=2$ to the known expression. ${ }^{(1)}$

6. DISCUSSION

In the present paper we have found the σ-dependent scaling function $Y_{d, \sigma}\left(x_{1}, x_{2}\right)$ for the free energy per particle of the mean spherical model with an interaction potential falling with distance r as $r^{-d-\sigma}$ when $r \rightarrow \infty$. A convenient representation (5.16) of $Y_{d, \sigma}\left(x_{1}, x_{2}\right)$ has been obtained, which involves integral transforms [see Eq. (5.9)] of the simple function squareintegrable over $(0, \infty)$

$$
v_{d}(\tau)=\left(1+\tau^{2}\right)^{-(d+1) / 2}, \quad \tau \in(0, \infty)
$$

with the Mittag-Leffler kernel $E_{\sigma}\left(-\tau^{\sigma} z^{\sigma}\right)$. Such transforms are a particular case of more general transformations with Mittag-Leffler-type kernels,

$$
\tau^{\beta-1} E_{\alpha, \beta}\left(e^{i \varphi} \tau^{\alpha} x^{\alpha}\right), \quad x>0, \quad \frac{1}{2} \alpha \pi \leqslant \varphi \leqslant 2 \pi-\frac{1}{2} \alpha \pi
$$

in the class of functions square-integrable over ($0, \infty$), the mathematical theory of which has been developed. ${ }^{(9)}$ The suggested new analytical technique may be successfully used to generalize a number of results on the spherical model with different geometry and boundary conditions. ${ }^{(1)}$

Here we point out that some new information about the contribution of the long-distance asymptotics of the interaction potential to the formation of the critical bulk singularities of the mean spherical model can be derived from our results.

When $t=\left(T-T_{c}\right) / T_{c} \rightarrow 0$, the singular part, $c_{N}^{(\mathrm{s})}(K, 0)$, of the zero-field specific heat per particle is given by

$$
\begin{equation*}
c_{N}^{(\mathrm{s})}(K, 0) \simeq-\rho_{\sigma}^{2} K_{c}^{2} N_{0}^{-2 \sigma+d} \frac{\partial^{2}}{\partial x_{1}^{2}} Y_{d \sigma}\left(x_{1}, 0\right) \tag{6.1}
\end{equation*}
$$

The differentiation of the scaling function (5.16) with respect to x_{1}, by taking into account Eq. (4.12), yields

$$
\begin{equation*}
\frac{\partial}{\partial x_{1}} Y_{d, \sigma}\left(x_{1}, x_{2}\right)=\frac{1}{2} g\left(x_{1}, x_{2}\right) \tag{6.2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
c_{N}^{(\mathrm{s})}(K, 0) \simeq-\frac{1}{2} \rho_{\sigma}^{2} K_{c}^{2} N_{0}^{-2 \sigma+d} \frac{\partial}{\partial x_{1}} g\left(x_{1}, 0\right) \tag{6.3}
\end{equation*}
$$

In the limit $x_{1} \rightarrow-\infty$ one may use Eq. (4.15) to obtain from (6.3)

$$
\begin{equation*}
c_{N}^{(\mathrm{s})}(K, 0) \simeq-\frac{1}{2} \rho_{\sigma}^{2} K_{c}^{2} N_{0}^{-2 \sigma+d}\left|x_{1}\right|^{-2}, \quad x_{1} \rightarrow-\infty \tag{6.4}
\end{equation*}
$$

Hence, the singular part of the specific heat just below the critical point behaves as

$$
\begin{equation*}
c_{N}^{(\mathrm{s})}(K, 0) \simeq-\frac{1}{2} N_{0}^{-d}|t|^{-2}, \quad t \rightarrow 0^{-} \tag{6.5}
\end{equation*}
$$

independently of the interaction potential parameter σ.
When $x_{1} \rightarrow+\infty$, the use of Eqs. (4.22) and (6.3) yields

$$
\begin{equation*}
c_{N}^{(\mathrm{s})}(K, 0) \simeq-\frac{\sigma}{2(d-\sigma)} N_{0}^{-2 \sigma+d}\left(\rho_{\sigma} K_{c}\right)^{2} D_{d, \sigma}^{-\sigma /(d-\sigma)} x_{1}^{(2 \sigma-d) /(d-\sigma)} \tag{6.6}
\end{equation*}
$$

i.e., just above the critical point one obtains in the leading order

$$
\begin{equation*}
c_{N}^{(\mathrm{s})}(K, 0) \simeq-\frac{\sigma}{2(d-\sigma)}\left(\rho_{\sigma} K_{c}\right)^{d /(d-\sigma)} D_{d, \sigma}^{-\sigma /(d-\sigma)} t^{(2 \sigma-d) /(d-\sigma)}, \quad t \rightarrow 0^{+} \tag{6.7}
\end{equation*}
$$

The known value of the critical exponent α_{s} for the singular part of the specific heat follows from Eq. (6.7):

$$
\begin{equation*}
\alpha_{s}=-\frac{2 \sigma-d}{d-\sigma}, \quad \sigma<d<2 \sigma \tag{6.8}
\end{equation*}
$$

Thus, we see that the low-temperature branch of the singular part of the bulk specific heat, $c_{\infty}^{(s)}(K, 0)$, is asymptotically built out of a (vanishing in the thermodynamic limit) function [see Eq. (6.5)] which does not depend on the decay parameter σ of the interaction potential.

An analogous situation is observed in the case of the magnetic susceptibility $\chi_{N}(K, L)$. By differentiation of the magnetization per particle,

$$
\begin{equation*}
m_{N}(K, L)=-\frac{\partial}{\partial L} \beta f_{N}(K, L)=\frac{H}{\rho_{\sigma} \hat{J}(\mathbf{0})} \tilde{\phi}_{N}^{-1} \tag{6.9}
\end{equation*}
$$

with allowance for the dependence of $\tilde{\phi}_{N}$ on H through the equation of state [see Eqs. (4.2), (4.3)], one obtains

$$
\begin{equation*}
T \chi_{N}(K, L)=\frac{N_{0}^{\sigma}}{\rho_{\sigma} K g\left(x_{1}, x_{2}\right)}\left[1-\frac{x_{2}}{g\left(x_{1}, x_{2}\right)} \frac{\partial g\left(x_{1}, x_{2}\right)}{\partial x_{2}}\right] \tag{6.10}
\end{equation*}
$$

Therefore, for the zero-field susceptibility in the limit $x_{1} \rightarrow-\infty$, one finds, by using (4.15), the following leading-order expression

$$
\begin{equation*}
\chi_{N}(K, 0) \simeq \frac{N_{0}^{\sigma}}{\rho_{\sigma} \hat{J}(\mathbf{0})}\left|x_{1}\right|, \quad x_{1} \rightarrow-\infty \tag{6.11}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\chi_{N}(K, 0) \simeq \beta_{c}|t| N_{0}^{d}, \quad t \rightarrow 0^{-} \tag{6.12}
\end{equation*}
$$

i.e., the low-temperature branch of the bulk zero-field susceptibility per particle is again asymptotically built out of a (diverging in the thermodynamic limit) function that does not depend on the decay parameter σ of the interaction potential.

In the limit $x_{1} \rightarrow \infty$ from (4.22) it follows that

$$
\begin{equation*}
\chi_{N}(K, 0) \simeq N_{0}^{\sigma}\left[\rho_{\sigma} \hat{J}(0)\right]^{-1} D_{d, \sigma}^{\sigma /(d-\sigma)} x_{1}^{-\sigma /(d-\sigma)} \tag{6.13}
\end{equation*}
$$

which implies that the singularity at the critical point from above is characterized by the σ-dependent critical exponent $\gamma=\sigma /(d-\sigma)$:

$$
\begin{equation*}
\chi_{N}(K, 0) \simeq \beta_{c} D_{d, \sigma}^{\sigma /(d-\sigma)}\left(\rho_{\sigma} K_{c}\right)^{-d /(d-\sigma)} t^{-\sigma /(d-\sigma)}, \quad t \rightarrow 0^{+} \tag{6.14}
\end{equation*}
$$

It is interesting to note that the low-temperature asymptotic expressions (6.5) and (6.12) hold even in the extreme case of the infinitely coordinated Husimi-Temperley mean spherical model with $N=N_{0}^{d}$ spins.

Finally, we remark that the leading finite-size corrections to the free energy density and to the equation for the spherical field, when $N_{0} \rightarrow 0$, $\phi \rightarrow 0$ so that ϕN_{0}^{σ} remains finite, were found to be of the form

$$
\begin{align*}
\delta U_{d, \sigma}^{(N)}(\phi) & \simeq N_{0}^{-d} f_{1}\left(\phi N_{0}^{\sigma}\right) \\
\delta W_{d, \sigma}^{(N)}(\phi) & \simeq N_{0}^{-d+\sigma} f_{1}^{\prime}\left(\phi N_{0}^{\sigma}\right), \quad f_{1}^{\prime}(x)=\frac{d}{d x} f_{1}(x) \tag{6.15}
\end{align*}
$$

provided one takes into account only the leading asymptotic form (2.6) of the Fourier transform of the interaction potential. Although the explicit expressions for the functions f_{1}, f_{1}^{\prime}, which follow from Eqs. (5.8) and (4.6), respectively, are valid for any $d>0, \sigma>0$, finite values of ϕN_{0}^{σ} satisfy the equation of state when $\phi \rightarrow 0, N_{0} \rightarrow \infty$ only if $\sigma<d<2 \sigma$. The corresponding bulk contributions are given then by (5.6) and (4.11).

The modifications of finite-size scaling for $d \leqslant \sigma$ and $d \geqslant 2 \sigma$ will be considered elsewhere (see also ref. 2).

APPENDIX A

The Mittag-Leffler-type functions are entire functions of finite order of growth, defined by the power series ${ }^{(6)}$

$$
\begin{equation*}
E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)}, \quad \alpha>0 \tag{A.1}
\end{equation*}
$$

In particular, the function $E_{\alpha}(z)=E_{\alpha, 1}(z)$ has been introduced by MittagLeffler. A rather complete study of these functions can be found in ref. 8 (see also ref. 6).

Here we are interested in the properties of functions (A.1) when $0<\alpha<2$ and $\beta \geqslant 0$.

To derive the identity (1.3), one may start with the known integral ${ }^{(6)}$

$$
\begin{equation*}
\int_{0}^{\infty} d t e^{-t} E_{\alpha}\left(t^{\alpha} z\right)=\frac{1}{1-z} \tag{A.2}
\end{equation*}
$$

which converges in the complex z plane to the left of the line $\operatorname{Re} z^{1 / \alpha}=1$, $|\arg z| \leqslant \frac{1}{2} \alpha \pi$. By setting here $z=-p^{-\alpha}, p>0$, and $t=x p$, one obtains the Laplace transformation ${ }^{(9)}$

$$
\begin{equation*}
\int_{0}^{\infty} d x e^{-p x} E_{\alpha}\left(-x^{x}\right)=\frac{p^{\alpha-1}}{1+p^{\alpha}}, \quad \operatorname{Re} p>0 \tag{A.3}
\end{equation*}
$$

Equation (1.3) now follows by integration of (A.3) over p from zero to z.
The identity (1.4) may be derived from a more general integral

$$
\begin{equation*}
\int_{0}^{\infty} d t e^{-1} t^{\beta-1} E_{\alpha, \beta}\left(t^{\alpha} y\right)=\frac{1}{1-y} \tag{A.4}
\end{equation*}
$$

which is readily obtained by means of term-by-term integration with the use of series (A.1). By setting in (A.4) $y=-z^{-\alpha}, z>0$, and $t=x z$, one obtains the Laplace transformation ${ }^{(10)}$

$$
\begin{equation*}
\int_{0}^{\infty} d x e^{-z x} x^{\beta-1} E_{\alpha, \beta}\left(-x^{\alpha}\right)=\frac{z^{\alpha-\beta}}{1+z^{\alpha}} \tag{A.5}
\end{equation*}
$$

Hence $\beta=\alpha$ yields Eq. (1.4).
Particular cases (1.1) and (1.2) follow from general identities (1.3) and (1.4), respectively, considering that

$$
\begin{equation*}
E_{1}(z)=E_{1,1}(z)=e^{z} \tag{A.6}
\end{equation*}
$$

The integral representation (5.7) is equivalent to

$$
\begin{equation*}
E_{\alpha}\left(-t^{\alpha}\right)=(\pi t)^{-1 / 2} \int_{0}^{\infty} d u E_{2 \alpha}\left(-u^{2 \alpha}\right) e^{-u^{2} / 4 t} \tag{A.7}
\end{equation*}
$$

which may be obtained by means of term-by-term integration of the series representing the integrand.

In order to derive the integral representation (4.5), we write down

$$
\begin{align*}
& (4 \pi x)^{-1 / 2} \int_{0}^{\infty} d t t^{\sigma} E_{\sigma, \sigma}\left(-t^{\sigma}\right) e^{-t^{2} / 4 x} \\
& \quad=(4 \pi)^{-1 / 2} \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{\sigma(k+1)} x^{\sigma(k+1) / 2}}{\Gamma(\sigma(k+1))} \Gamma\left(\frac{1}{2} \sigma(k+1)+\frac{1}{2}\right) \\
& \quad=x^{\sigma / 2} \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{\sigma k / 2}}{\Gamma\left(\frac{1}{2} \sigma(k+1)\right)}=x^{\sigma / 2} E_{\sigma / 2, \sigma / 2}\left(-x^{\sigma / 2}\right) \tag{A.8}
\end{align*}
$$

The differential relation (5.5) follows from the identities

$$
\begin{align*}
\frac{d}{d z}\left[z^{\alpha} E_{\alpha, \alpha+1}\left(-z^{\alpha}\right)\right] & =z^{\alpha-1} \sum_{k=0}^{\infty} \frac{(-1)^{k} z^{\alpha k}}{\Gamma(\alpha k+\alpha)} \\
& =z^{\alpha-1} E_{\alpha, \alpha}\left(-z^{\alpha}\right) \tag{A.9}
\end{align*}
$$

and

$$
\begin{align*}
z^{\alpha} E_{\alpha, \alpha+1}\left(-z^{\alpha}\right) & =-\sum_{k=1}^{\infty}(-1)^{k} \frac{z^{\alpha k}}{\Gamma(x k+1)} \\
& =1-E_{\alpha}\left(-z^{\alpha}\right) \tag{A.10}
\end{align*}
$$

Hence

$$
\begin{equation*}
-\frac{d}{d z} E_{\alpha}\left(-z^{\alpha}\right)=z^{\alpha-1} E_{\alpha, \alpha}\left(-z^{\alpha}\right) \tag{A.11}
\end{equation*}
$$

In the derivation of asymptotic expansions (4.16) and (5.21) we have used the leading asymptotic behavior of $E_{\alpha}\left(-x^{\alpha}\right)$ and $E_{\alpha, \alpha}\left(-x^{\alpha}\right)$ when $x \rightarrow \infty$, which follows from the following lemma.

Lemma ${ }^{(8)}$. Let $0<\alpha<2, \beta$ be an arbitrary complex number, and γ be a real number obeying the condition

$$
\frac{1}{2} \alpha \pi<\gamma<\min \{\pi, \alpha \pi\}
$$

Then for any integer $p \geqslant 1$ the following asymptotic expressions hold when $|z| \rightarrow \infty$:

1. At $|\arg z| \leqslant \gamma$,

$$
\begin{equation*}
E_{\alpha, \beta}(z)=\frac{1}{\alpha} z^{(1-\beta) / \alpha} e^{z^{1 / \alpha}}-\sum_{k=1}^{p} \frac{z^{-k}}{\Gamma(\beta-\alpha k)}+\mathcal{O}\left(|z|^{-p-1}\right) \tag{A.12}
\end{equation*}
$$

2. At $\gamma \leqslant|\arg z| \leqslant \pi$,

$$
\begin{equation*}
E_{\alpha, \beta}(z)=-\sum_{k=1}^{p} \frac{z^{-k}}{\Gamma(\beta-\alpha k)}+\mathcal{O}\left(|z|^{-p-1}\right) \tag{A.13}
\end{equation*}
$$

Notice that since $\Gamma(0)=\infty$, from (A.13) it follows that

$$
\begin{equation*}
E_{\alpha, x}\left(-x^{\alpha}\right) \simeq-\frac{x^{-2 \alpha}}{\Gamma(-\alpha)}, \quad x \rightarrow \infty, \quad \alpha \neq 1 \tag{A.14}
\end{equation*}
$$

By integration of Eq. (A.11) one gets

$$
\begin{equation*}
\int_{0}^{t} d z z^{1-x} E_{\alpha, \alpha}\left(-z^{\alpha}\right)=1-E_{\alpha}\left(-t^{\alpha}\right) \tag{A.15}
\end{equation*}
$$

Passing here to the limit $t \rightarrow \infty$, taking account of (A.13), one finds

$$
\begin{equation*}
\int_{0}^{\infty} d z z^{1-\alpha} E_{\alpha, x}\left(-z^{\alpha}\right)=1 \tag{A.16}
\end{equation*}
$$

As a direct consequence of (A.16), one obtains for any $t>0$

$$
\begin{equation*}
\int_{0}^{\infty} d x x^{1-\alpha} E_{\alpha, \alpha}\left(-x^{\alpha} t\right)=t^{-1} \tag{A.17}
\end{equation*}
$$

The integration of Eq. (A.17) over t from $\phi>0$ to one yields the identity

$$
\begin{align*}
-\ln \phi & =\int_{0}^{\infty} d x x^{-1} \int_{\phi}^{1} d t x^{\alpha} E_{\alpha, \alpha}\left(-x^{\alpha} t\right) \\
& =\alpha \int_{0}^{\infty} d x x^{-1}\left[E_{\alpha}\left(-x^{\alpha} \phi\right)-E_{\alpha}\left(-x^{\alpha}\right)\right] \tag{A.18}
\end{align*}
$$

where use has been made of the relationship

$$
\begin{equation*}
\alpha \frac{d}{d t} E_{\alpha}\left(-x^{\alpha} t\right)=\sum_{k=1}^{\infty} \frac{(-1)^{k} t^{k-1} x^{\alpha k}}{\Gamma(\alpha k)}=-x^{\alpha} E_{\alpha, \alpha}\left(-x^{\alpha} t\right) \tag{A.19}
\end{equation*}
$$

APPENDIX B

For the sake of completeness, a short derivation of Eqs. (4.2) and (4.3), obtained first in ref. 5 , is given here.

One starts by noticing that with the aid of the d-dimensional version of the Jacobi identity (see, e.g., ref. 1)

$$
\begin{equation*}
\sum_{l \in \mathbb{Z}^{d}} e^{-a|t|^{2}}=\left(\frac{\pi}{a}\right)^{d / 2} \sum_{t \in \mathbb{Z}^{d}} e^{-\pi^{2}|l|^{2} a^{-1}} \tag{B.1}
\end{equation*}
$$

the finite-size term (3.20) may be cast in the form

$$
\begin{align*}
& \delta W_{d, \sigma}^{(N)}(\phi) \\
& \quad=\rho_{\sigma}^{-1} \widetilde{\phi}^{-1} N_{0}^{-d}\left\{1+\int_{0}^{\infty} d x\left[\sum_{l \in \mathbb{Z}^{d}}^{\prime} e^{-\left.x|l|\right|^{2} y^{-2}}-\left(\frac{\pi y^{2}}{x}\right)^{d / 2}\right] F_{\sigma / 2}(x)\right\} \tag{B.2}
\end{align*}
$$

The integral in the right-hand side of Eq. (B.2) may be identically written as a sum of two terms, $I_{1}(y)+I_{2}(y)$, where

$$
\begin{align*}
& I_{1}(y)=\int_{0}^{\infty} d x\left[\sum_{t \in \mathbb{Z}^{d}}^{\prime} e^{-\left.x| |\right|^{2} y^{-2}}-\left(\frac{\pi y^{2}}{x}\right)^{d / 2}\right]\left[F_{\sigma / 2}(x)-\frac{x^{\sigma / 2-1}}{\Gamma(\sigma / 2)}\right] \\
& I_{2}(y)=\frac{1}{\Gamma(\sigma / 2)} \int_{0}^{\infty} d x x^{\sigma / 2-1}\left[\sum_{l \in \overline{\mathbb{Z}}^{d}}^{\prime} e^{-x|t|^{2} y^{-2}}-\left(\frac{\pi y^{2}}{x}\right)^{d / 2}\right] \tag{B.3}
\end{align*}
$$

Now, by making use of the identity (1.4), we see that

$$
\begin{array}{r}
\sum_{\boldsymbol{l} \in \mathbb{Z}^{d}}^{\prime} \int_{0}^{\infty} d x e^{-\left.x| |\right|^{2} y^{-2}}\left[F_{\sigma / 2}(x)-\frac{x^{\sigma / 2-1}}{\Gamma(\sigma / 2)}\right] \\
\quad=y^{\sigma} \sum_{l \in \mathbb{Z}^{d}}^{\prime}|\boldsymbol{l}|^{-\sigma}\left[\left(|\boldsymbol{l}| y^{-1}\right)^{\sigma}+1\right]^{-1} \tag{B.4}
\end{array}
$$

and, taking into account the small-argument asymptotic behavior of $F_{\sigma / 2}(x)$, we may set

$$
\begin{equation*}
\pi^{d / 2} y^{d} \int_{0}^{\infty} d x x^{-d / 2}\left[F_{\sigma / 2}(x)-\frac{x^{\sigma / 2-1}}{\Gamma(\sigma / 2)}\right]=-(2 \pi y)^{d} D_{d, \sigma} \tag{B.5}
\end{equation*}
$$

whereby the constant $D_{d, \sigma}$ is defined.
Next, $I_{2}(y)$ may be written as

$$
\begin{align*}
I_{2}(y)= & \frac{1}{\Gamma(\sigma / 2)} \lim _{\delta \rightarrow 0}\left\{\sum_{l \in \mathbb{Z}^{d}}^{\prime} \int_{\delta}^{\infty} d x x^{\sigma / 2-1} e^{-\left.x|l|\right|^{2} y^{-2}}\right. \\
& \left.-\pi^{d / 2} y^{d} \int_{\delta}^{\infty} d x x^{-(d-\sigma) / 2-1}\right\}=\frac{y^{\sigma}}{\Gamma(\sigma / 2)} C_{d, \sigma} \tag{B.6}
\end{align*}
$$

where $C_{d, \sigma}$ is a Madelung-type constant ${ }^{(5)}$

$$
\begin{equation*}
C_{d, \sigma}=\lim _{\delta \rightarrow 0}\left\{\sum_{\boldsymbol{l} \in \mathbb{Z}^{d}}^{\prime} \Gamma\left(\frac{\sigma}{2}, \delta|\boldsymbol{l}|^{2}\right)|\boldsymbol{l}|^{-\sigma}-\int_{\mathbb{R}^{d}} d^{d} \mathbf{r} \Gamma\left(\frac{\sigma}{2}, \delta|\mathbf{r}|^{2}\right)|\mathbf{r}|^{-\sigma}\right\} \tag{B.7}
\end{equation*}
$$

Collecting the results (B.2)-(B.7), we get ${ }^{(5)}$

$$
\begin{align*}
W_{d, \sigma}^{(N)}(\phi) \simeq & W_{d, \sigma}(\phi)+\rho_{\sigma}^{-1} N_{0}^{d-\sigma}\left\{\left(\tilde{\phi} N_{0}^{\sigma}\right)^{-1}+\frac{C_{d, \sigma}}{(2 \pi)^{\sigma} \Gamma(\sigma / 2)}\right. \\
& +D_{d, \sigma}\left(\tilde{\phi} N_{0}^{\sigma}\right)^{d / \sigma-1}-\widetilde{\phi} N_{0}^{\sigma} \sum_{l \in \mathbb{Z}^{d}}^{\prime}(2 \pi|\boldsymbol{l}|)^{-\sigma} \\
& \left.\times\left[(2 \pi|\boldsymbol{l}|)^{\sigma}+\widetilde{\phi} N_{0}^{\sigma}\right]^{-1}\right\} \tag{B.8}
\end{align*}
$$

Now, Eqs. (4.2) and (4.3) follow by the substitution of (B.8) and (4.1) into (2.12) and by taking into account Eq. (4.11). The finite-size temperature shift is identified as ${ }^{(5)}$

$$
\begin{equation*}
\varepsilon_{N}=-\left(\rho_{\sigma} K_{c}\right)^{-1} N_{0}^{-d+\sigma} \frac{C_{d, \sigma}}{(2 \pi)^{\sigma} \Gamma(\sigma / 2)} \tag{B.9}
\end{equation*}
$$

ACKNOWLEDGMENTS

I thank Dr. Virginia Kiryakova, Institute of Mathematics, Sofia, for drawing my attention to the Mittag-Leffler-type functions and their properties.

REFERENCES

1. S. Singh and R. K. Pathria, Phys. Rev. B 31:4483 (1985); 32:4618 (1985).
2. J. Shapiro and J. Rudnick, J. Stat. Phys. 43:51 (1986).
3. M. E. Fisher and V. Privman, Commun. Math. Phys. 103:527 (1986).
4. G. S. Joyce, Phys. Rev. 146:349 (1966); in Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).
5. J. G. Brankov and N. S. Tonchev, J. Stat. Phys. 52:143 (1988).
6. H. Bateman and A. Erdelyi, Higher Transcedental Functions, Vol. 3 (McGraw-Hill, New York, 1955).
7. H. W. Lewis and G. H. Wannier, Phys. Rev. 88:682 (1952).
8. M. M. Djrbashyan, Integral Transformations and Representations of Functions in a Complex Domain (in Russian) (Nauka, Moscow, 1966).
9. P. Humbert, C. R. Acad. Sci. Paris 236:1467 (1953).
10. R. P. Agarwal, C. R. Acad. Sci. Paris 236:2031 (1953).

[^0]: ${ }^{1}$ Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, USSR.
 ${ }^{2}$ Permanent address: Institute of Mechanics and Biomechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.

